کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6767320 512458 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forecasting wind power quantiles using conditional kernel estimation
ترجمه فارسی عنوان
پیش بینی توانایی انرژی باد با استفاده از برآورد کرنل شرطی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
The efficient management of wind farms and electricity systems benefit greatly from accurate wind power quantile forecasts. For example, when a wind power producer offers power to the market for a future period, the optimal bid is a quantile of the wind power density. An approach based on conditional kernel density (CKD) estimation has previously been used to produce wind power density forecasts. The approach is appealing because: it makes no distributional assumption for wind power; it captures the uncertainty in forecasts of wind velocity; it imposes no assumption for the relationship between wind power and wind velocity; and it allows more weight to be put on more recent observations. In this paper, we adapt this approach. As we do not require an estimate of the entire wind power density, our new proposal is to optimise the CKD-based approach specifically towards estimation of the desired quantile, using the quantile regression objective function. Using data from three European wind farms, we obtained encouraging results for this new approach. We also achieved good results with a previously proposed method of constructing a wind power quantile as the sum of a point forecast and a forecast error quantile estimated using quantile regression.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 80, August 2015, Pages 370-379
نویسندگان
, ,