کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6767322 | 512461 | 2015 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A hybrid maximum power point tracking for partially shaded photovoltaic systems in the tropics
ترجمه فارسی عنوان
ردیابی حداکثر نقطه قدرت هیبرید برای سیستم های فتوولتائیک با سایه جزئی در مناطق استوایی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Partial shading and rapidly changing irradiance conditions significantly impact on the performance of photovoltaic (PV) systems. These impacts are particularly severe in tropical regions where the climatic conditions result in very large and rapid changes in irradiance. In this paper, a hybrid maximum power point (MPP) tracking (MPPT) technique for PV systems operating under partially shaded conditions witapid irradiance change is proposed. It combines a conventional MPPT and an artificial neural network (ANN)-based MPPT. A low cost method is proposed to predict the global MPP region when expensive irradiance sensors are not available or are not justifiable for cost reasons. It samples the operating point on the stairs of I-V curve and uses a combination of the measured current value at each stair to predict the global MPP region. The conventional MPPT is then used to search within the classified region to get the global MPP. The effectiveness of the proposed MPPT is demonstrated using both simulations and an experimental setup. Experimental comparisons with four existing MPPTs are performed. The results show that the proposed MPPT produces more energy than the other techniques and can effectively track the global MPP with a fast tracking speed under various shading patterns.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 76, April 2015, Pages 53-65
Journal: Renewable Energy - Volume 76, April 2015, Pages 53-65
نویسندگان
Lian Lian Jiang, D.R. Nayanasiri, Douglas L. Maskell, D.M. Vilathgamuwa,