کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6768545 | 512477 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine
ترجمه فارسی عنوان
تشخیص گسل برای سیستم انتقال توربین بادی مبتنی بر یادگیری چند منظوره و ماشین بردار پشتیبانی موجک شانون
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Fault diagnosis for wind turbine transmission systems is an important task for reducing their maintenance cost. However, the non-stationary dynamic operating conditions of wind turbines pose a challenge to fault diagnosis for wind turbine transmission systems. In this paper, a novel fault diagnosis method based on manifold learning and Shannon wavelet support vector machine is proposed for wind turbine transmission systems. Firstly, mixed-domain features are extracted to construct a high-dimensional feature set characterizing the properties of non-stationary vibration signals from wind turbine transmission systems. Moreover, an effective manifold learning algorithm with non-linear dimensionality reduction capability, orthogonal neighborhood preserving embedding (ONPE), is applied to compress the high-dimensional feature set into low-dimensional eigenvectors. Finally, the low-dimensional eigenvectors are inputted into a Shannon wavelet support vector machine (SWSVM) to recognize faults. The performance of the proposed method was proved by successful fault diagnosis application in a wind turbine's gearbox. The application results indicated that the proposed method improved the accuracy of fault diagnosis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 62, February 2014, Pages 1-9
Journal: Renewable Energy - Volume 62, February 2014, Pages 1-9
نویسندگان
Baoping Tang, Tao Song, Feng Li, Lei Deng,