کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
678353 888642 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forest treatment residues for thermal energy compared with disposal by onsite burning: Emissions and energy return
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تکنولوژی و شیمی فرآیندی
پیش نمایش صفحه اول مقاله
Forest treatment residues for thermal energy compared with disposal by onsite burning: Emissions and energy return
چکیده انگلیسی
Mill residues from forest industries are the source for most of the current wood-based energy in the US, approximately 2.1% of the nation's energy use in 2007. Forest residues from silvicultural treatments, which include limbs, tops, and small non-commercial trees removed for various forest management objectives, represent an additional source of woody biomass for energy. We spatially analyzed collecting, grinding, and hauling forest residue biomass on a 515,900 ha area in western Montana, US, to compare the total emissions of burning forest residues in a boiler for thermal energy with the alternatives of onsite disposal by pile-burning and using either natural gas or #2 distillate oil to produce the equivalent amount of useable energy. When compared to the pile-burn/fossil fuel alternatives, carbon dioxide emissions from the bioenergy alternative were approximately 60%, methane emissions were approximately 3%, and particulate emissions less than 10 μm were 11% and 41%, respectively, for emission control and no-control boilers. Emissions from diesel consumption for collecting, grinding, and hauling biomass represented less than 5% of the total bioenergy emissions at an average haul distance of 136 km. Across the study area, an average 21 units of bioenergy were produced for each unit of diesel energy used to collect, grind, and haul biomass. Fossil fuel energy saved by the bioenergy alternative relative to the pile-burn/fossil fuel alternatives averaged 14.7-15.2 GJ t−1 of biomass.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomass and Bioenergy - Volume 34, Issue 5, May 2010, Pages 737-746
نویسندگان
, , , ,