کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6853165 658315 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semi-supervised combination of experts for aerosol optical depth estimation
ترجمه فارسی عنوان
ترکیب نیمه نظارتی کارشناسان برای برآورد عمق نوری آیرزل
کلمات کلیدی
ترکیب کارشناسان، برآورد آئروسل، سنجش از دور،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Aerosols are small airborne particles produced by natural and man-made sources. Aerosol Optical Depth (AOD), recognized as one of the most important quantities in understanding and predicting the Earth's climate, is estimated daily on a global scale by several Earth-observing satellite instruments. Each instrument has different coverage and sensitivity to atmospheric and surface conditions, and, as a result, the quality of AOD estimated by different instruments varies across the globe. We present a semi-supervised method for learning how to aggregate estimations from multiple satellite instruments into a more accurate estimate, where labels come from a small number of accurate and expensive ground-based instruments. The method also accounts for the problem of missing experts, an issue inherent to the AOD estimation task. By assuming a context-dependent prior, the model is capable of incorporating additional information and providing estimates even when there are no available experts. Moreover, the proposed method uses a latent variable to partition the data, so that in each partition the expert AOD estimations are aggregated in a different, optimal way. We applied the method to combine global AOD estimations from 5 instruments aboard 4 satellites, and the results indicate it can successfully exploit labeled and unlabeled data to produce accurate aggregated AOD estimations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 230, January 2016, Pages 1-13
نویسندگان
, , ,