کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6853175 | 658315 | 2016 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A concept drift-tolerant case-base editing technique
ترجمه فارسی عنوان
یک تکنیک اصلاح مورد مبتنی بر مبنای راندگی مفهومی است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
استدلال مبتنی بر مورد، ویرایش پایه مورد، مفهوم رانش مدل صلاحیت
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
The evolving nature and accumulating volume of real-world data inevitably give rise to the so-called “concept drift” issue, causing many deployed Case-Based Reasoning (CBR) systems to require additional maintenance procedures. In Case-base Maintenance (CBM), case-base editing strategies to revise the case-base have proven to be effective instance selection approaches for handling concept drift. Motivated by current issues related to CBR techniques in handling concept drift, we present a two-stage case-base editing technique. In Stage 1, we propose a Noise-Enhanced Fast Context Switch (NEFCS) algorithm, which targets the removal of noise in a dynamic environment, and in Stage 2, we develop an innovative Stepwise Redundancy Removal (SRR) algorithm, which reduces the size of the case-base by eliminating redundancies while preserving the case-base coverage. Experimental evaluations on several public real-world datasets show that our case-base editing technique significantly improves accuracy compared to other case-base editing approaches on concept drift tasks, while preserving its effectiveness on static tasks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 230, January 2016, Pages 108-133
Journal: Artificial Intelligence - Volume 230, January 2016, Pages 108-133
نویسندگان
Ning Lu, Jie Lu, Guangquan Zhang, Ramon Lopez de Mantaras,