کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6853175 658315 2016 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A concept drift-tolerant case-base editing technique
ترجمه فارسی عنوان
یک تکنیک اصلاح مورد مبتنی بر مبنای راندگی مفهومی است
کلمات کلیدی
استدلال مبتنی بر مورد، ویرایش پایه مورد، مفهوم رانش مدل صلاحیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
The evolving nature and accumulating volume of real-world data inevitably give rise to the so-called “concept drift” issue, causing many deployed Case-Based Reasoning (CBR) systems to require additional maintenance procedures. In Case-base Maintenance (CBM), case-base editing strategies to revise the case-base have proven to be effective instance selection approaches for handling concept drift. Motivated by current issues related to CBR techniques in handling concept drift, we present a two-stage case-base editing technique. In Stage 1, we propose a Noise-Enhanced Fast Context Switch (NEFCS) algorithm, which targets the removal of noise in a dynamic environment, and in Stage 2, we develop an innovative Stepwise Redundancy Removal (SRR) algorithm, which reduces the size of the case-base by eliminating redundancies while preserving the case-base coverage. Experimental evaluations on several public real-world datasets show that our case-base editing technique significantly improves accuracy compared to other case-base editing approaches on concept drift tasks, while preserving its effectiveness on static tasks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 230, January 2016, Pages 108-133
نویسندگان
, , , ,