کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6854226 1437408 2018 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Design of optimal high pass and band stop FIR filters using adaptive Cuckoo search algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Design of optimal high pass and band stop FIR filters using adaptive Cuckoo search algorithm
چکیده انگلیسی
This paper presents an efficient design of digital FIR high pass and band stop filters using an adaptive cuckoo search algorithm (ACSA). The important features of ACSA are - (i) the step size is independent and (ii) it is accurately decided from the current fitness value. The step size is decided according to the current fitness value within the iteration process. This increases the convergence speed. The other five global optimizers are also used for optimization. The optimal solutions obtained by the ACSA are compared with the other global optimizers. CEC 2005 benchmark test functions are considered for the comparison. The results are compared in terms of the convergence speed, accuracy, deviation from the desired response, minimum stop-band attenuation and maximum pass-band attenuation. The statistical analysis, i.e. t-Test is performed to claim the superiority of the proposed approach. The simulation results presented in this paper reveal the fact that the performance of the ACSA is better than the other algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 70, April 2018, Pages 67-80
نویسندگان
, , , ,