کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6854268 | 1437410 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Accelerating nearest neighbor partitioning neural network classifier based on CUDA
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The nearest neighbor partitioning (NNP) method is a high performance approach which is used for improving traditional neural network classifiers. However, the construction process of NNP model is very time-consuming, particularly for large data sets, thus limiting its range of application. In this study, a parallel NNP method is proposed to accelerate NNP based on Compute Unified Device Architecture(CUDA). In this method, blocks and threads are used to evaluate potential neural networks and to perform parallel subtasks, respectively. Experimental results manifest that the proposed parallel method improves performance of NNP neural network classifier. Furthermore, the application of parallel NNP in performance evaluation of cement microstructure indicates that the proposed approach has favorable performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 68, February 2018, Pages 53-62
Journal: Engineering Applications of Artificial Intelligence - Volume 68, February 2018, Pages 53-62
نویسندگان
Lin Wang, Xuehui Zhu, Bo Yang, Jifeng Guo, Shuangrong Liu, Meihui Li, Jian Zhu, Ajith Abraham,