کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6854460 | 1437438 | 2015 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
HU-FCF++: A novel hybrid method for the new user cold-start problem in recommender systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Recommender system (RS) is a special type of information systems that assists decision makers to choose appropriate items according to their preferences and interests. It is utilized in different domains to personalize its applications by recommending items, such as books, movies, songs, restaurants, news articles, jokes, among others. An important issue in RS namely the new user cold-start problem occurring when a new user migrates to the system has grasped a great attraction of researchers in recent years. Existing researches are faced with the limitations of the relied dataset, the determination of the optimal number of clusters, the similarity metric, irrelevant users and the selection of membership values. In this paper, we present a novel hybrid method so-called HU-FCF++ to deal with these drawbacks by considering the integration of existing state-of-the-arts of several groups of methods in order to combine the advantages of different groups and eliminate their disadvantages by some special procedures. A numerical example on a simulated dataset is given to illustrate the activities of the proposed approach. Experimental validation on the benchmark RS datasets show that HU-FCF++ achieves better accuracy than the relevant methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 41, May 2015, Pages 207-222
Journal: Engineering Applications of Artificial Intelligence - Volume 41, May 2015, Pages 207-222
نویسندگان
Le Hoang Son,