کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6854684 | 1437592 | 2018 | 51 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An investor sentiment reward-based trading system using Gaussian inverse reinforcement learning algorithm
ترجمه فارسی عنوان
یک سیستم بازاریابی مبتنی بر احساسات سرمایه گذار با استفاده از الگوریتم یادگیری تقویت معکوس گاوسی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
احساس سرمایه گذار، یادگیری تقویت معکوس، پشتیبانی از بردار ماشین یادگیری، پاداش احساسات،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Investor sentiment has been shown as an important factor that influences market returns, and a number of profitable trading systems have been proposed by taking advantage of investor sentiment signals. In this paper, we aim to design an investor sentiment reward-based trading system using Gaussian inverse reinforcement learning method. Our hypothesis is that while markets interact with investor's sentiment, there exists an intrinsic mapping between investor's sentiment and market conditions revealing future market directions. We propose an investor sentiment reward based trading system aimed at extracting only signals that generate either negative or positive market responses. Such a reward extraction mechanism is based not only on market returns but also market volatility representing a succinct and robust feature space. The back-test results show that the proposed sentiment reward-based trading system is superior to various benchmark strategies on S&P 500 index and market-based ETFs as well as few other existing news sentiment-based trading signals. Moreover, we find that sentiment reward trading system is much more effective in a volatile market, but it is sensitive to transaction costs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 114, 30 December 2018, Pages 388-401
Journal: Expert Systems with Applications - Volume 114, 30 December 2018, Pages 388-401
نویسندگان
Steve Y. Yang, Yangyang Yu, Saud Almahdi,