کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6854882 | 1437598 | 2018 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bearing faults diagnosis using fuzzy expert system relying on an Improved Range Overlaps and Similarity method
ترجمه فارسی عنوان
تشخیص خطاهای باربری با استفاده از سیستم متخصص فازی با تکیه بر روش همپوشانی و همبستگی دامنه بهبود یافته
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Bearing fault diagnosis represents the core of induction machines condition monitoring. This paper presents an application of fuzzy expert system (FES) to bearing faults diagnosis. Here, fuzzy rules are automatically induced from numerical data using the Similarity partition method. Data of faulty bearings presents high noise level. Thus, an Improved Range Overlaps method (IRO) is proposed to select input feature vectors by giving them validity degrees. The Similarity method partition was found confused with features presenting range overlap. Consequently, the new proposed Improved Range Overlaps method is found quite suitable for improving the classifier accuracy. The model validity and efficiency were proved using experimental bearing faults data from Case Western Reserve University database and the NSF I/UCR Center on Intelligent Maintenance Systems (IMS) database.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 108, 15 October 2018, Pages 134-142
Journal: Expert Systems with Applications - Volume 108, 15 October 2018, Pages 134-142
نویسندگان
Toufik Berredjem, Mohamed Benidir,