کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6854987 | 1437601 | 2018 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Transfer learning approach for classification and noise reduction on noisy web data
ترجمه فارسی عنوان
روش انتقال یادگیری برای طبقه بندی و کاهش سر و صدا در داده های پر سر و صدا وب
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شبکه عصبی مصنوعی، انتقال یادگیری، تشخیص خودرو، مجموعه داده پر سر و صدا، جداسازی جنگل،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
One of the main ingredients to learn a visual representation of an object using the Convolutional Neural Networks is a large and carefully annotated dataset. Acquiring a dataset in a demanded scale is not a straightforward task; therefore, the community attempts to solve this problem by creating noisy datasets gathered from web sources. In this paper, this issue is tackled by designing a vehicle recognition system using Convolutional Neural Networks and noisy web data. In the proposed system, the transfer learning technique is employed, and behavior of several deep architectures trained on a noisy dataset are studied. In addition, the external noise of the gathered dataset is reduced by exploiting an unsupervised method called Isolation Forest, and the new training results are examined. Based on the experiments, high recognition accuracies were achieved by training two states of the art networks on the noisy dataset, and the obtained results were slightly improved by using the proposed noise reduction framework. Finally, a demonstration application is provided to show the capability and the performance of the proposed approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 105, 1 September 2018, Pages 221-232
Journal: Expert Systems with Applications - Volume 105, 1 September 2018, Pages 221-232
نویسندگان
Javad Abbasi Aghamaleki, Sina Moayed Baharlou,