کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6855126 1437607 2018 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment
چکیده انگلیسی
The sine cosine algorithm (SCA), a recently proposed population-based optimization algorithm, is based on the use of sine and cosine trigonometric functions as operators to update the movements of the search agents. To optimize performance, different parameters on the SCA must be appropriately tuned. Setting such parameters is challenging because they permit the algorithm to escape from local optima and avoid premature convergence. The main drawback of the SCA is that the parameter setting only affects the exploitation of the prominent regions. However, the SCA has good exploration capabilities. This article presents an enhanced version of the SCA by merging it with particle swarm optimization (PSO). PSO exploits the search space better than the operators of the standard SCA. The proposed algorithm, called ASCA-PSO, has been tested over several unimodal and multimodal benchmark functions, which show its superiority over the SCA and other recent and standard meta-heuristic algorithms. Moreover, to verify the capabilities of the SCA, the SCA has been used to solve the real-world problem of a pairwise local alignment algorithm that tends to find the longest consecutive substrings between two biological sequences. Experimental results provide evidence of the good performance of the ASCA-PSO solutions in terms of accuracy and computational time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 99, 1 June 2018, Pages 56-70
نویسندگان
, , , , , ,