کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6855145 | 1437607 | 2018 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Computer-aided detection and diagnosis of mammographic masses using multi-resolution analysis of oriented tissue patterns
ترجمه فارسی عنوان
تشخیص و تشخیص توسط توده های ماموگرافی با استفاده از تجزیه و تحلیل چندمتغیره از الگوهای بافت گرا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In this article, a novel approach is proposed for automatic detection and diagnosis of mammographic masses, one of the common signs of non-palpable breast cancer. However, detection and diagnosis of mass are difficult due to its irregular shape, variability in size, and occlusion within breast tissue. The main aim of this study is to classify masses into benign and malignant after detecting them automatically. We propose an iterative method of high-to-low intensity thresholding controlled by radial region growing for the detection of masses. Based on the observation that in presence of mass orientation of tissue patterns changes, which may differ from benign to malignant, a multi resolution analysis of orientation of tissue patterns is then performed to categorize them. The performance of the proposed algorithm is evaluated with images from the digital database for screening mammography (DDSM), containing 450 benign masses, 440 malignant masses, and 410 normal images. A sensitivity of 85.0% is achieved at 1.4 false positives per image in mass detection, whereas an area under the receiver operating characteristic curve of 0.92 with an accuracy of 83.30% is achieved for the diagnosis of malignant masses.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 99, 1 June 2018, Pages 168-179
Journal: Expert Systems with Applications - Volume 99, 1 June 2018, Pages 168-179
نویسندگان
Jayasree Chakraborty, Abhishek Midya, Rinku Rabidas,