| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6855198 | 1437609 | 2018 | 47 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												The best of two worlds: Forecasting high frequency volatility for cryptocurrencies and traditional currencies with Support Vector Regression
												
											ترجمه فارسی عنوان
													بهترین دو جهان: پیش بینی نوسانات فرکانس بالا برای کریپتوکورها و ارزهای سنتی با رگرسیون بردار پشتیبانی 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													هوش مصنوعی
												
											چکیده انگلیسی
												This paper provides an evaluation of the predictive performance of the volatility of three cryptocurrencies and three currencies with recognized stores of value using daily and hourly frequency data. We combined the traditional GARCH model with the machine learning approach to volatility estimation, estimating the mean and volatility equations using Support Vector Regression (SVR) and comparing to GARCH family models. Furthermore, the models' predictive ability was evaluated using Diebold-Mariano test and Hansen's Model Confidence Set. The analysis was reiterated for both low and high frequency data. Results showed that SVR-GARCH models managed to outperform GARCH, EGARCH and GJR-GARCH models with Normal, Student's t and Skewed Student's t distributions. For all variables and both time frequencies, the SVR-GARCH model exhibited statistical significance towards its superiority over GARCH and its extensions.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 97, 1 May 2018, Pages 177-192
											Journal: Expert Systems with Applications - Volume 97, 1 May 2018, Pages 177-192
نویسندگان
												Yaohao Peng, Pedro Henrique Melo Albuquerque, Jader Martins Camboim de Sá, Ana Julia Akaishi Padula, Mariana Rosa Montenegro, 
											