کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6855208 1437610 2018 42 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhanced movie content similarity based on textual, auditory and visual information
ترجمه فارسی عنوان
شباهت محتوای پیشرفته فیلم بر اساس اطلاعات متنی، شنوایی و بصری
کلمات کلیدی
توصیه های فیلم مبتنی بر محتوا، مدل سازی موضوع آنالیز تصویری صوتی و تصویری، تلفیق چندجملهای، بازیابی اطلاعات، 00-01، 99-00،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
In this paper, we examine the ability of low-level multimodal features to extract movie similarity, in the context of a content-based movie recommendation approach. In particular, we demonstrate the extraction of multimodal representation models of movies, based on textual information from subtitles, as well as cues from the audio and visual channels. With regards to the textual domain, we emphasize our research in topic modeling of movies based on their subtitles, in order to extract topics that discriminate between movies. Regarding the visual domain, we focus on the extraction of semantically useful features that model camera movements, colors and faces, while for the audio domain we adopt simple classification aggregates based on pretrained models. The three domains are combined with static metadata (e.g. directors, actors) to prove that the content-based movie similarity procedure can be enhanced with low-level multimodal information. In order to demonstrate the proposed content representation approach, we have built a small dataset of 160 widely known movies. We assert movie similarities, as propagated by the individual modalities and fusion models, in the form of recommendation rankings. Extensive experimentation proves that all three low-level modalities (text, audio and visual) boost the performance of a content-based recommendation system, compared to the typical metadata-based content representation, by more than 50% relative increase. To our knowledge, this is the first approach that utilizes a wide range of features from all involved modalities, in order to enhance the performance of the content similarity estimation, compared to the metadata-based approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 96, 15 April 2018, Pages 86-102
نویسندگان
, ,