کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6855251 | 1437609 | 2018 | 44 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
GMM posterior features for improving online handwriting recognition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An online handwriting recognition (HR) system is usually developed considering point-based features that describe different geometric attributes of handwriting. Often, due to the wide variations in writing styles, the use of point-based features results in high intra-class variability in feature space. To address this problem, we propose a set of features based on character class-conditional probabilities (posterior features) derived from Gaussian Mixture Model (GMM) for online HR task. The proposed features capture class dependent characteristics with a probabilistic framework, which in turn aid in minimizing the intra-class variability of the feature space. Also, the features well represent the inter-class variability of the feature space for a given classification task. The efficacy of the proposed GMM posterior features is shown for character and word recognition tasks, employing support vector machine (SVM) classifier. The experiments are conducted on three databases: the locally collected Assamese digit database, the UNIPEN English character database, and the UNIPEN ICROW-03 English word database. Recognition results are promising over the reported works employing point-based features.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 97, 1 May 2018, Pages 421-433
Journal: Expert Systems with Applications - Volume 97, 1 May 2018, Pages 421-433
نویسندگان
Subhasis Mandal, S. R. Mahadeva Prasanna, Suresh Sundaram,