کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6855646 | 660831 | 2016 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
NN approach and its comparison with NN-SVM to beta-barrel prediction
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
To address the problem, this research embarks upon a NN technique and its comparison with hybrid-two-level NN-SVM methodology to classify inter-class and intra-class transitions to predict the number and range of beta membrane spanning regions. The methodology utilizes a sliding-window-based feature extraction to train two different class transitions entitled symmetric and asymmetric models. In symmetric modelling, the NN and SVM frameworks train for sliding window over the same intra-class areas such as inner-to-inner, membrane(beta)-to-membrane and outer-to-outer. In contrast, the asymmetric transition trains a NN-SVM classifier for inter-class transition such as outer-to-membrane (beta) and membrane (beta)-to-inner, inner-to-membrane and membrane-to-outer. For the NN and NN-SVM to generate robust outcomes, the prediction methodologies are analysed by jack-knife tests and single protein tests. The computer simulation results demonstrate a significant impact and a superior performance of NN-SVM tests with a 5 residue overlap for signal protein over NN with and without redundant proteins for prediction of trans membrane beta barrel spanning regions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 61, 1 November 2016, Pages 203-214
Journal: Expert Systems with Applications - Volume 61, 1 November 2016, Pages 203-214
نویسندگان
Hassan Kazemian, Syed Adnan Yusuf, Kenneth White, Cedric Maxime Grimaldi,