کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6858899 | 1438424 | 2017 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Efficient learning of Bayesian networks with bounded tree-width
ترجمه فارسی عنوان
یادگیری کارآمد شبکه های بیزی با عرض محدود
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شبکه بیزی، ساختار یادگیری، محدود درخت عرض، تپه نوردی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods [24], [29] tackle the problem by using k-trees to learn the optimal Bayesian network with tree-width up to k. Finding the best k-tree, however, is computationally intractable. In this paper, we propose a sampling method to efficiently find representative k-trees by introducing an informative score function to characterize the quality of a k-tree. To further improve the quality of the k-trees, we propose a probabilistic hill climbing approach that locally refines the sampled k-trees. The proposed algorithm can efficiently learn a quality Bayesian network with tree-width at most k. Experimental results demonstrate that our approach is more computationally efficient than the exact methods with comparable accuracy, and outperforms most existing approximate methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 80, January 2017, Pages 412-427
Journal: International Journal of Approximate Reasoning - Volume 80, January 2017, Pages 412-427
نویسندگان
Siqi Nie, Cassio P. de Campos, Qiang Ji,