کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6858925 | 1438426 | 2016 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Nonparametric Bayesian topic modelling with the hierarchical Pitman-Yor processes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The Dirichlet process and its extension, the Pitman-Yor process, are stochastic processes that take probability distributions as a parameter. These processes can be stacked up to form a hierarchical nonparametric Bayesian model. In this article, we present efficient methods for the use of these processes in this hierarchical context, and apply them to latent variable models for text analytics. In particular, we propose a general framework for designing these Bayesian models, which are called topic models in the computer science community. We then propose a specific nonparametric Bayesian topic model for modelling text from social media. We focus on tweets (posts on Twitter) in this article due to their ease of access. We find that our nonparametric model performs better than existing parametric models in both goodness of fit and real world applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 78, November 2016, Pages 172-191
Journal: International Journal of Approximate Reasoning - Volume 78, November 2016, Pages 172-191
نویسندگان
Kar Wai Lim, Wray Buntine, Changyou Chen, Lan Du,