کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6858937 1438435 2016 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning from incomplete data in Bayesian networks with qualitative influences
ترجمه فارسی عنوان
یادگیری از اطلاعات ناقص در شبکه های بیزی با تأثیرات کیفی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Domain experts can often quite reliably specify the sign of influences between variables in a Bayesian network. If we exploit this prior knowledge in estimating the probabilities of the network, it is more likely to be accepted by its users and may in fact be better calibrated with reality. We present two algorithms that exploit prior knowledge of qualitative influences in learning the parameters of a Bayesian network from incomplete data. The isotonic regression EM, or irEM, algorithm adds an isotonic regression step to standard EM in each iteration, to obtain parameter estimates that satisfy the given qualitative influences. In an attempt to reduce the computational burden involved, we further define the qirEM algorithm that enforces the constraints imposed by the qualitative influences only once, after convergence of standard EM. We evaluate the performance of both algorithms through experiments. Our results demonstrate that exploitation of the qualitative influences improves the parameter estimates over standard EM, and more so if the proportion of missing data is relatively large. The results also show that the qirEM algorithm performs just as well as its computationally more expensive counterpart irEM.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 69, February 2016, Pages 18-34
نویسندگان
, , ,