کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6859853 | 1438735 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An improved teaching-learning-based optimization algorithm using Lévy mutation strategy for non-smooth optimal power flow
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
One of the major tools for power system operators is optimal power flow (OPF) which is an important tool in both planning and operating stages, designed to optimize a certain objective over power network variables under certain constraints. This article investigates the possibility of using recently emerged evolutionary-based approach as a solution for the OPF problems which is based on a new teaching-learning-based optimization (TLBO) algorithm using Lévy mutation strategy for optimal settings of OPF problem control variables. The performance of this approach is studied and evaluated on the standard IEEE 30-bus and IEEE 57-bus test systems with different objective functions and is compared to methods reported in the literature. At the end, the results which are extracted from implemented simulations confirm Lévy mutation TLBO (LTLBO) as an effective solution for the OPF problem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Electrical Power & Energy Systems - Volume 65, February 2015, Pages 375-384
Journal: International Journal of Electrical Power & Energy Systems - Volume 65, February 2015, Pages 375-384
نویسندگان
Mojtaba Ghasemi, Sahand Ghavidel, Mohsen Gitizadeh, Ebrahim Akbari,