کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6860636 1438745 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Application of a hybrid quantized Elman neural network in short-term load forecasting
ترجمه فارسی عنوان
استفاده از یک شبکه عصبی المان کم عمق در پیش بینی بار کوتاه مدت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
This paper investigates the short-term load forecasting (STLF) problem via a hybrid quantized Elman neural network (HQENN) with the least number of quantized inputs, hourly historical load, hourly predicted target temperature and time index. The purpose is to show the capabilities of HQENN to learn the complex dynamics of hourly power load time series and forecast the near future loads with high accuracies. The HQENN model is comprised of the qubit neurons and the classic neurons. The laws of quantum physics are employed to describe the interactions of the qubit neurons and the classic neurons. The extended quantum learning algorithm makes the context-layer weights being extended into the hidden-layer weights matrix such that they can be updated along with hidden-layer weights to extract more information about the load series. To improve the forecasting accuracy, the genetic algorithm (GA) is introduced to obtain the optimal or suboptimal structure of the HQENN model. The results indicate that the forecasting method based on HQENN has an acceptable high accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Electrical Power & Energy Systems - Volume 55, February 2014, Pages 749-759
نویسندگان
, , , , ,