کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6861308 1439245 2018 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Alignment-consistent recursive neural networks for bilingual phrase embeddings
ترجمه فارسی عنوان
شبکه های عصبی بازگشتی هم ترازی برای ماندگاری کلمات دو زبانه
کلمات کلیدی
تعبیر واژه دو زبانه، اصطلاحات کلمه پردازش زبان متقابل زبانی، ترجمه ماشین
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Learning semantic representations of bilingual phrases is very important for statistical machine translation to overcome data sparsity and exploit semantic information. In this paper, we consider word alignments as a semantic bridge between the source and target phrases, and propose two neural networks based on the conventional recursive autocoder, which exploit word alignments to generate alignment-consistent bilingual phrase structures: One is Alignment Enhanced Recursive Autoencoder that incorporates a word-alignment-related error into the final objective function; The other is Alignment Guided Recursive Neural Network which treats word alignments as direct signals to guide phrase structure constructions. Then, we further establish the semantic correspondences between the source and target nodes of the generated bilingual phrase structures via word alignments. By jointly minimizing recursive autoencoder reconstruction errors, structural alignment consistency errors and cross-lingual reconstruction errors, our model not only generates alignment-consistent phrase structures, but also captures different levels of semantic correspondences within bilingual phrases. Experiments on the NIST Chinese-English translation task show that our model achieves significant improvements over the baseline.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 156, 15 September 2018, Pages 1-11
نویسندگان
, , , , ,