کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6861377 | 1439249 | 2018 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Sentiment classification with word localization based on weakly supervised learning with a convolutional neural network
ترجمه فارسی عنوان
طبقه بندی احساسات با محلی سازی کلمه بر اساس آموزش ضعیف نظارت شده با شبکه عصبی کانولوشن
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
آموزش ضعیف تحت نظارت، محلی سازی ورد، شبکه عصبی متقاطع، نقشه برداری فعال سازی کلاس، تجزیه و تحلیل احساسات،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In order to maximize the applicability of sentiment analysis results, it is necessary to not only classify the overall sentiment (positive/negative) of a given document but also to identify the main words that contribute to the classification. However, most datasets for sentiment analysis only have the sentiment label for each document or sentence. In other words, there is a lack of information about which words play an important role in sentiment classification. In this paper, we propose a method for identifying key words discriminating positive and negative sentences by using a weakly supervised learning method based on a convolutional neural network (CNN). In our model, each word is represented as a continuous-valued vector and each sentence is represented as a matrix whose rows correspond to the word vector used in the sentence. Then, the CNN model is trained using these sentence matrices as inputs and the sentiment labels as the output. Once the CNN model is trained, we implement the word attention mechanism that identifies high-contributing words to classification results with a class activation map, using the weights from the fully connected layer at the end of the learned CNN model. To verify the proposed methodology, we evaluated the classification accuracy and the rate of polarity words among high scoring words using two movie review datasets. Experimental results show that the proposed model can not only correctly classify the sentence polarity but also successfully identify the corresponding words with high polarity scores.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 152, 15 July 2018, Pages 70-82
Journal: Knowledge-Based Systems - Volume 152, 15 July 2018, Pages 70-82
نویسندگان
Gichang Lee, Jaeyun Jeong, Seungwan Seo, CzangYeob Kim, Pilsung Kang,