کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6861593 1439255 2018 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Constraint selection in metric learning
ترجمه فارسی عنوان
انتخاب محدودیت در یادگیری متریک
کلمات کلیدی
یادگیری فعال، انتخاب محدودیت پویا، یادگیری متریک، مقیاس نمونه، یادگیری تصادفی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
A number of machine learning and knowledge-based algorithms are using a metric, or a distance, in order to compare individuals. The Euclidean distance is usually employed, but it may be more efficient to learn a parametric distance such as Mahalanobis metric. Learning such a metric is a hot topic since more than ten years now, and a number of methods have been proposed to efficiently learn it. However, the nature of the problem makes it quite difficult for large scale data, as well as data for which classes overlap. This paper presents a simple way of improving accuracy and scalability of any iterative metric learning algorithm, where constraints are obtained prior to the algorithm. The proposed approach relies on a loss-dependent weighted selection of constraints that are used for learning the metric. Using the corresponding dedicated loss function, the method clearly allows to obtain better results than state-of-the-art methods, both in terms of accuracy and time complexity. Some experimental results on real world, and potentially large, datasets are demonstrating the effectiveness of our proposition.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 146, 15 April 2018, Pages 91-103
نویسندگان
,