کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6862241 | 677221 | 2016 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Optimal targeting of nonlinear chaotic systems using a novel evolutionary computing strategy
ترجمه فارسی عنوان
هدف قرار دادن بهینه از سیستم های هرج و مرج غیر خطی با استفاده از یک روش جدید محاسباتی تکاملی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
کنترل هرج و مرج، پویایی هرج و مرج، بهینه سازی، هوش محاسباتی، بهینه سازی آموزش مبتنی بر یادگیری،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Control of chaotic systems to given targets is a subject of substantial and well-developed research issue in nonlinear science, which can be formulated as a class of multi-modal constrained numerical optimization problem with multi-dimensional decision variables. This investigation elucidates the feasibility of applying a novel population-based metaheuristics labeled here as Teaching-learning-based optimization to direct the orbits of discrete chaotic dynamical systems towards the desired target region. Several consecutive control steps of small bounded perturbations are made in the Teaching-learning-based optimization strategy to direct the chaotic series towards the optimal neighborhood of the desired target rapidly, where a conventional controller is effective for chaos control. Working with the dynamics of the well-known Hénon as well as Ushio discrete chaotic systems, we assess the effectiveness and efficiency of the Teaching-learning-based optimization based optimal control technique, meanwhile the impacts of the core parameters on performances are also discussed. Furthermore, possible engineering applications of directing chaotic orbits are discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 107, 1 September 2016, Pages 261-270
Journal: Knowledge-Based Systems - Volume 107, 1 September 2016, Pages 261-270
نویسندگان
Wang Yudong, Feng Xiaoyi, Lyu Xin, Li Zhengyang, Liu Bo,