کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6862713 | 677015 | 2013 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-view classification with cross-view must-link and cannot-link side information
ترجمه فارسی عنوان
طبقه بندی چندین نمایش با لینک متقابل باید لینک و نمی تواند لینک اطلاعات جانبی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
طبقه بندی، آموزش چندرسانه ای، بدون مکاتبه، داده های متعدد مشاهده نشده، اطلاعات جانبی متقاطع،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Side information, like must-link (ML) and cannot-link (CL), has been widely used in single-view classification tasks. However, so far such information has never been applied in multi-view classification tasks. In many real world situations, data with multiple representations or views are frequently encountered, and most proposed algorithms for such learning situations require that all the multi-view data should be paired. Yet this requirement is difficult to satisfy in some settings and the multi-view data could be totally unpaired. In this paper, we propose an learning framework to design the multi-view classifiers by only employing the weak side information of cross-view must-links (CvML) and cross-view cannot-links (CvCL). The CvML and the CvCL generalize the traditional single-view must-link (SvML) and single-view cannot-link (SvCL), and to the best of our knowledge, are first definitely introduced and applied into the multi-view classification situations. Finally, we demonstrate the effectiveness of our method in our experiments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 54, December 2013, Pages 137-146
Journal: Knowledge-Based Systems - Volume 54, December 2013, Pages 137-146
نویسندگان
Qiang Qian, Songcan Chen, Xudong Zhou,