| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6862749 | 677015 | 2013 | 7 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Automated detection of atrial fibrillation using Bayesian paradigm
												
											ترجمه فارسی عنوان
													تشخیص خودکار فیبریلاسیون دهلیزی با استفاده از پارامتر بیزی 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													هوش مصنوعی
												
											چکیده انگلیسی
												Electrocardiogram (ECG) is widely used as a diagnostic tool to identify atrial tachyarrhythmias such as atrial fibrillation. The ECG signal is a P-QRS-T wave representing the cardiac function. The minute variations in the durations and amplitude of these waves cannot be easily deciphered by the naked eye. Hence, there is a need for computer aided diagnosis (CAD) of cardiac healthcare. The current paper presents a methodology for ECG based pattern analysis of normal sinus rhythm and atrial fibrillation (AF) beats. The denoised and registered ECG beats were subjected to independent component analysis (ICA) for data reduction. The weights of ICA were used as features for classification using Naive Bayes and Gaussian mixture model (GMM) classifiers. The performance and the upper bound on probability of error in classification were analyzed using Chernoff and Bhattacharyya bounds. The Naive Bayes classifier provided an average sensitivity of 99.32%, specificity of 99.33% and accuracy of 99.33%, while the GMM provided an average sensitivity of 100%, specificity of 99% and accuracy of 99.42%. The probability of error during classification was less for GMM compared to Naive Bayes classifier (NBC) as GMM provided higher performance than the NBC.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 54, December 2013, Pages 269-275
											Journal: Knowledge-Based Systems - Volume 54, December 2013, Pages 269-275
نویسندگان
												Roshan Joy Martis, U.Rajendra Acharya, Hari Prasad, Chua Kuang Chua, Choo Min Lim, 
											