کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6862928 1439398 2018 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exploiting layerwise convexity of rectifier networks with sign constrained weights
ترجمه فارسی عنوان
بهره گیری از محدوده ی لایه ای شبکه های یکسوجه با وزن های محدود نشانه
کلمات کلیدی
شبکه عصبی یکسو کننده، شبکه عصبی قابل تفسیر هندسی، الگوریتم بهینه سازی بزرگ سازی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
By introducing sign constraints on the weights, this paper proposes sign constrained rectifier networks (SCRNs), whose training can be solved efficiently by the well known majorization-minimization (MM) algorithms. We prove that the proposed two-hidden-layer SCRNs, which exhibit negative weights in the second hidden layer and negative weights in the output layer, are capable of separating any number of disjoint pattern sets. Furthermore, the proposed two-hidden-layer SCRNs can decompose the patterns of each class into several clusters so that each cluster is convexly separable from all the patterns from the other classes. This provides a means to learn the pattern structures and analyse the discriminant factors between different classes of patterns. Experimental results are provided to show the benefits of sign constraints in improving classification performance and the efficiency of the proposed MM algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 105, September 2018, Pages 419-430
نویسندگان
, , , ,