کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6863443 | 677403 | 2013 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
2DPCA with L1-norm for simultaneously robust and sparse modelling
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Robust dimensionality reduction is an important issue in processing multivariate data. Two-dimensional principal component analysis based on L1-norm (2DPCA-L1) is a recently developed technique for robust dimensionality reduction in the image domain. The basis vectors of 2DPCA-L1, however, are still dense. It is beneficial to perform a sparse modelling for the image analysis. In this paper, we propose a new dimensionality reduction method, referred to as 2DPCA-L1 with sparsity (2DPCAL1-S), which effectively combines the robustness of 2DPCA-L1 and the sparsity-inducing lasso regularization. It is a sparse variant of 2DPCA-L1 for unsupervised learning. We elaborately design an iterative algorithm to compute the basis vectors of 2DPCAL1-S. The experiments on image data sets confirm the effectiveness of the proposed approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 46, October 2013, Pages 190-198
Journal: Neural Networks - Volume 46, October 2013, Pages 190-198
نویسندگان
Haixian Wang, Jing Wang,