کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6863534 | 1439515 | 2018 | 36 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A fast online multivariable identification method for greenhouse environment control problems
ترجمه فارسی عنوان
یک روش شناسایی چند منظوره آنلاین برای کنترل مشکلات محیط زیست گلخانه ای
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Growing and pruning radial basis function (GAP-RBF) is extended for identification and control of multivariable nonlinear systems in this work. The proposed MGAP-RBF algorithm utilizes a sliding data window in the growing criterion and limits the number of hidden neurons by introducing a soft constraint in the pruning strategy to reduce the effect of disturbance and to improve learning speed, respectively. The performance of the proposed method is tested through some benchmark problems, and the results show that the proposed method can gain faster speed than the original GAP-RBF method and Ran algorithm, and more importantly, it can obtain an overwhelming advantages especially for some large-scale data sets with some complex attributes. Finally, the proposed method is applied to online PID tuning on a greenhouse environment control process. Simulation results show the proposed MGAP-RBF algorithm has better performance than the traditional RBF method and the original GAP-RBF method, in particular, it is faster and provides a more compact network with reduced computational complexity than the original GAP-RBF method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 312, 27 October 2018, Pages 63-73
Journal: Neurocomputing - Volume 312, 27 October 2018, Pages 63-73
نویسندگان
Haigen Hu, Cheng Luo, Qiu Guan, Xiaoxin Li, Shengyong Chen, Qianwei Zhou,