کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6863559 | 1439515 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Latent subspace modeling of sequential data under the maximum entropy discrimination framework
ترجمه فارسی عنوان
مدل سازی زیرمجموعه های اطراف داده های ترتیبی تحت چارچوب تبعیض حداکثر آنتروپی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
مدل های مخفی مارکوف، اصل بزرگ، تبعیض حداکثر آنتروپی، استنتاج میانه میدان، نمایندگی متغیر وابسته،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Hidden Markov models (HMMs) are a popular approach for modeling continuous sequential data, typically based on the assumption of Gaussian-distributed observations. A significant issue HMMs with Gaussian conditional densities are confronted with concerns effectively modeling high-dimensional observations, without getting prone to overfitting or singularities. To this end, one can resort to extracting lower-dimensional latent variable representations of the observed high-dimensional data, as part of the inference algorithm of the postulated HMM. Factor analysis (FA) is a well-established linear latent variable scheme that can be employed for this purpose; its functionality consists in modeling the covariances between the elements of multivariate observations under a set of linear assumptions. Recently, it has been proposed that FA can be effectively generalized under an efficient large-margin Bayesian inference perspective, namely maximum entropy discrimination (MED). This work capitalizes on these recent findings to derive an effective HMM-driven sequential data modeling framework for high-dimensional data. Our proposed approach extracts lower-dimensional latent variable representations of observed high-dimensional data, taking into account the large-margin principle. On this basis, it postulates that the data temporal dynamics are conditional to the inferred values of these latent variables. We devise efficient mean-field inference algorithms for our model, and exhibit its advantages through a set of experiments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 312, 27 October 2018, Pages 210-217
Journal: Neurocomputing - Volume 312, 27 October 2018, Pages 210-217
نویسندگان
Sotirios P. Chatzis,