کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6863670 1439516 2018 42 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hybrid extreme learning machine approach for homogeneous neural networks
ترجمه فارسی عنوان
رویکرد دستگاه ترکیبی افقی برای شبکه های عصبی همگن
کلمات کلیدی
شبکه های عصبی مصنوعی، نورون سفارشی ترکیبی از دستگاه یادگیری افراطی، مشکل رگرسیون،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
In this study, we propose a novel hybrid structure method called a structured composite model for creating a series of custom neurons using different neuron subunits. The hybrid structure is supervised by a control structure called a homogeneous hybrid extreme learning machine (Ho-HyELM), which creates a series of homogeneous single-layer neural networks using these custom neurons, where each has a different number of hidden units. These networks are trained with the extreme learning machine (ELM) algorithm. The proposed Ho-HyELM approach was applied to a series of regression and classification problems, and the results obtained indicate that the proposed method for splitting a neuron into neuron subunits creates optimal different network types for each problem. The custom ELM-trained networks are more optimal than the commonly used linear unit networks with the sigmoid transfer function.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 311, 15 October 2018, Pages 397-412
نویسندگان
, , , ,