کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6863698 | 1439518 | 2018 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Evolutionary multi-objective optimization based ensemble autoencoders for image outlier detection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Image outlier detection has been an important research issue for many computer vision tasks. However, most existing outlier detection methods fail in the high-dimensional image datasets. In order to address this problem, we propose a novel image outlier detection method by combining autoencoder with Adaboost (ADAE). By ensembling many weak autoencoders, our method can better capture the statistical correlations among the features of normal data than the single autoencoder. Therefore, the proposed ADAE is able to determine the outliers efficiently. In order to reduce the many parameters in ADAE, we introduce the Sparse Group Lasso (SGL) constraint into the learning objective of ADAE. We combine Adagrad with Proximal Gradient Descent to optimize this additional learning objective. We also propose the multi-objective evolutionary algorithm to determine the best penalty factors of SGL. By evaluating on several famous image datasets, the detection results testify to the outstanding outlier detection performance of ADAE. The evaluation results also show SGL can make the detection model more compact while maintaining the similar detection performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 309, 2 October 2018, Pages 192-200
Journal: Neurocomputing - Volume 309, 2 October 2018, Pages 192-200
نویسندگان
Zhaomin Chen, Chai Kiat Yeo, Bu Sung Lee, Chiew Tong Lau, Yaochu Jin,