کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6863709 | 1439519 | 2018 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel robust algorithm for position and orientation detection based on cascaded deep neural network
ترجمه فارسی عنوان
یک الگوریتم قوی برای تشخیص موقعیت و جهت گیری بر اساس شبکه عصبی عمیق آبشار
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص شی، شبکه عصبی محکم، شبکه عصبی عمیق مخلوط،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Estimating position and orientation of the object by using machine vision is essential in industrial automation. The traditional canny operator and Hough transform edge detection algorithm is widely used, but its accuracy and real-time object recognition in complex backgrounds are very limited. Other algorithms such as SVM and BP network are usually inaccurate for regression issues. In this paper, the method of a cascade of convolution networks is proposed which results in high precision pose estimates. SSD is utilized to obtain the bounding box of the object to narrow down the recognition range. Convolution neural network is utilized to detect the orientation of the object. This method can extract weak features of the sample image. In generally, the proposed method possess a greatly improved accuracy and recognition rate compared with the traditional algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 308, 25 September 2018, Pages 138-146
Journal: Neurocomputing - Volume 308, 25 September 2018, Pages 138-146
نویسندگان
Weiyang Lin, Xinyang Ren, Tiantian Zhou, Xiaojing Cheng, Mingsi Tong,