کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6863718 1439519 2018 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Valid data based normalized cross-correlation (VDNCC) for topography identification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Valid data based normalized cross-correlation (VDNCC) for topography identification
چکیده انگلیسی
The Normalized Cross-Correlation (NCC) function is a widely used pattern-matching method. However, when the input data have a void area created by non-rectangular data or outliers, the accuracy of the standard NCC function may decrease. Especially when the regional mean values under the NCC window have a significant difference in the global mean value, the possible mis-matching may affect the identification results. In this paper, a valid data based NCC (VDNCC) algorithm is proposed for eliminating the effect of the void area. The new algorithm prevents void areas from being included in the calculation by introducing the valid data templates. VDNCC obtains higher NCC values and probabilities of correct matching in the experiments. In the ballistics identification tests, the results show that VDNCC can enhance the capacity of identification based on the NCC function as the core.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 308, 25 September 2018, Pages 184-193
نویسندگان
, , , ,