کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6863804 1439523 2018 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tree Memory Networks for modelling long-term temporal dependencies
ترجمه فارسی عنوان
شبکه های حافظه درخت برای مدل سازی وابستگی های طولانی مدت
کلمات کلیدی
شبکه های حافظه، پیش بینی مسیر، شبکه های مجازی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
In the domain of sequence modelling, Recurrent Neural Networks (RNN) have been capable of achieving impressive results in a variety of application areas including visual question answering, part-of-speech tagging and machine translation. However this success in modelling short term dependencies has not successfully transitioned to application areas such as trajectory prediction, which require capturing both short term and long term relationships. In this paper, we propose a Tree Memory Network (TMN) for jointly modelling both long term relationships between multiple sequences and short term relationships within a sequence, in sequence-to-sequence mapping problems. The proposed network architecture is composed of an input module, controller and a memory module. In contrast to related literature which models the memory as a sequence of historical states, we model the memory as a recursive tree structure. This structure more effectively captures temporal dependencies across both short and long term time periods through its hierarchical structure. We demonstrate the effectiveness and flexibility of the proposed TMN in two practical problems: aircraft trajectory modelling and pedestrian trajectory modelling in a surveillance setting. In both cases the proposed approach outperforms the current state-of-the-art. Furthermore, we perform an in depth analysis on the evolution of the memory module content over time and provide visual evidence on how the proposed TMN is able to map both short and long term relationships efficiently via a hierarchical structure.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 304, 23 August 2018, Pages 64-81
نویسندگان
, , , , ,