کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6863922 | 1439529 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Weightless neuro-symbolic GPS trajectory classification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a framework for dealing with the problem of GPS trajectory classification in the context of the Rio de Janeiro's public transit system (with hundreds or more classes). Such framework combines the versatile WiSARD classifier with a set of rules defined a priori, resulting in a neuro-symbolic learning system with very interesting characteristics and cutting-edge performance. We also verified the influence of different binarization methods in order to adapt raw data to WiSARD, which feeds from binary data only. These ideas were tested against a large data set of trajectories of buses from the city of Rio de Janeiro. The results confirm the practical applicability of those, since the accomplished performance was as good as that of other state-of-the-art rival methods in most test scenarios.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 298, 12 July 2018, Pages 100-108
Journal: Neurocomputing - Volume 298, 12 July 2018, Pages 100-108
نویسندگان
Raul Barbosa, Douglas O. Cardoso, Diego Carvalho, Felipe M.G. França,