کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6863953 | 1439530 | 2018 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A short text sentiment-topic model for product reviews
ترجمه فارسی عنوان
یک مدل مفهوم احساسات متن کوتاه برای بررسی محصول
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
مدل موضوع، تجزیه و تحلیل احساسات، بررسی معدن، طبقه بندی احساسات،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Topic and sentiment joint modelling has been successfully used in sentiment analysis for product reviews. However, the problem of text sparse is universal with the widespread smart devices and the shorter product reviews. In this paper, we propose a joint sentiment-topic model WSTM (Word-pair Sentiment-Topic Model) for the short text reviews, detecting sentiments and topics simultaneously from the text, especially considering the text sparse problem. Unlike other topic models modelling the generative process of each document, our directly models the generation of the word-pair set from the whole global corpus. In the generative process of WSTM, all of the words in a sentence have the same sentiment polarity, and two words in a word-pair have the same topic. We apply WSTM to two real-life Chinese product review datasets to verify its performance. In three experiments, compared with the existing approaches, the results demonstrate WSTM is quantitatively effective on both topic discovery and document level sentiment.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 297, 5 July 2018, Pages 94-102
Journal: Neurocomputing - Volume 297, 5 July 2018, Pages 94-102
نویسندگان
Shufeng Xiong, Kuiyi Wang, Donghong Ji, Bingkun Wang,