کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864108 | 1439535 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Online multiple object tracking via exchanging object context
ترجمه فارسی عنوان
ردیابی چندین شیء آنلاین از طریق مبادله زمینه شی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
ردیابی چندگانه، روش تشخیص پیگیری، مبادله مدل زمینه شی، پیگیری آنلاین،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Multiple object tracking is a key problem for many computer vision applications such as video surveillance, advanced driver assistance or animation. Most of existing tracking-by-detection methods are mainly based on object appearances and motions. However, the contextual information around the target has not been fully exploited. In this paper, we pay more attention to the contextual information and propose an Exchanging Object Context (EOC) model, which takes full advantage of the context information. Specifically, we implement an efficient and accurate online multiple object tracking algorithm with a novel affinity measure to associate detections. This measure calculates the similarity between targets and detections with the background smoothness after exchanging the contexts between detections and targets, using a novel color histogram descriptor. We refine the bounding boxes by measuring the context changes. Extensive experimental results on two public benchmarks demonstrate the effectiveness of the proposed tracking method with comparisons to several state-of-the-art trackers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 292, 31 May 2018, Pages 28-37
Journal: Neurocomputing - Volume 292, 31 May 2018, Pages 28-37
نویسندگان
Hongyang Yu, Lei Qin, Qingming Huang, Hongxun Yao,