کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864152 | 1439535 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Automatic decoding of input sinusoidal signal in a neuron model: High pass homomorphic filtering
ترجمه فارسی عنوان
رمز گشایی خودکار سیگنال ورودی سینوسی در یک مدل عصبی: فیلتر هومومورفیک بالا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
مدل نورون رمزگذاری عصبی، رمزگشایی خودکار، فیلتر هومومورفیک،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
A processing technique for decoding the information transferred from a sinusoidal input to the output spike sequence of a neuron model is a desirable tool for understanding the encoding principles of neuronal systems. An automatic decoding procedure, already proposed by the authors, is based on an improved version of the Signal to Noise Ratio (SNR) calculation and requires a knowledge of both spontaneous (in absence of input signal) and stimulated (in presence of input signal) neuronal activities. In this work, an automatic decoding procedure based on high-pass homomorphic filtering is developed that provides performances comparable or better than that obtained with the improved SNR. The advantages of not requiring the neuronal spontaneous activities, as most SNR methods do, are a procedure simplification, a reduction of the amount of data needed to decode the information, and the possibility of application to contexts where the neuronal spontaneous activity is not available.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 292, 31 May 2018, Pages 165-173
Journal: Neurocomputing - Volume 292, 31 May 2018, Pages 165-173
نویسندگان
Simone Orcioni, Alessandra Paffi, Francesca Camera, Francesca Apollonio, Micaela Liberti,