کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864214 | 1439536 | 2018 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Salient object detection in hyperspectral imagery using multi-scale spectral-spatial gradient
ترجمه فارسی عنوان
تشخیص جسم برجسته در تصاویر هیپرپترولیکی با استفاده از مقیاس طیفی-فضایی چندگانه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شیب طیفی فضایی، تجزیه و تحلیل چند مقیاس تشخیص جسم برجسته، تصاویر فوق العاده
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Spectra in hyperspectral images (HSIs) benefit identifying objects from cluttered background, thus increasing effort has been made for salient object detection in HSIs. However, most existing methods are sensitive to the spectral variation brought by uneven illumination during imaging as well as objects of various scales. To address this problem, we propose a novel multi-scale spectral-spatial gradient based salient object detection method for HSIs. Through constructing a region based hierarchical structure, we obtain various saliency maps by evaluating each region in multiple scales with a spectra-spatial gradient saliency model, which not only depicts the global region contrast with the spectral gradient, but also exploits the spatial gradient to highlight regions with semantic edges. Given these saliency maps, the final result is given as their weighted summation. The proposed method is robust to spectral variation and can adaptively detect objects of various scales. Two prior models are further integrated into the proposed saliency model to enhance the detection accuracy. Experimental results on real HSIs validate the effectiveness of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 291, 24 May 2018, Pages 215-225
Journal: Neurocomputing - Volume 291, 24 May 2018, Pages 215-225
نویسندگان
Lei Zhang, Yanning Zhang, Hangqi Yan, Yifan Gao, Wei Wei,