کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864303 | 1439538 | 2018 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust online object tracking via the convex hull representation model
ترجمه فارسی عنوان
ردیابی شیء آنلاین دقیق از طریق مدل نمایندگی محدب بدنه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
ردیابی شی، مجموعه تصویر، پوست کنده نمایندگی انحصاری،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
As an important issue in computer vision, online object tracking plays a critical role in numerous lines of research and has many potential applications. This paper presents a novel tracking algorithm based on the convex hull representation model with sparse representation. The tracked object is assumed to be within the object convex hull and the candidate convex hull in the meanwhile. The object convex hull consists of a principle component analysis (PCA) subspace, and the candidate convex hull is constructed by all candidate samples with the sparsity constraint. Then we propose the objective function for our convex hull representation model, and design an iterative algorithm to solve it effectively. Finally, we present a tracking framework based on the proposed convex hull model and a simple online update scheme. Both qualitative and quantitative evaluations on many challenging video clips demonstrate that our tracker achieves better performance than other state-of-the-art methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 289, 10 May 2018, Pages 44-54
Journal: Neurocomputing - Volume 289, 10 May 2018, Pages 44-54
نویسندگان
Chunjuan Bo, Junxing Zhang, Junjie Liu, Qiang Yao,