کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864329 | 1439538 | 2018 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel low-rank model for MRI using the redundant wavelet tight frame
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The low-rank matrix reconstruction has been attracted significant interest in compressed sensing magnetic resonance imaging (CS-MRI). To the end of computability, rank is often modeled by nuclear norm. The singular value thresholding (SVT) algorithm is taken as a solver of this model, usually. However, this model with the solver may be insufficient to obtain a high quality magnetic resonance (MR) image at high speed. Still inspired by the low-rank matrix reconstruction idea, we proposes a novel low-rank model with a new scheme of the weight selection to reconstruct the MR image under the redundant wavelet tight frame. A fast and accurate solver is given for the proposed model. Further, a new scheme is presented to accelerate the proposed solver. Numerical experiments demonstrate that the proposed solver and its accelerated version can converge stably. The proposed method is faster than some existing methods with the comparable quality.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 289, 10 May 2018, Pages 180-187
Journal: Neurocomputing - Volume 289, 10 May 2018, Pages 180-187
نویسندگان
Zhen Chen, Yuli Fu, Youjun Xiang, Junwei Xu, Rong Rong,