کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6864351 1439539 2018 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust objectness tracking with weighted multiple instance learning algorithm
ترجمه فارسی عنوان
ردیابی دقیق شیوه نامه با الگوریتم یادگیری چند نمونه وزن
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
A novel improved online weighted multiple instance learning algorithm(IWMIL) for visual tracking is proposed. In the IWMIL algorithm, the importance of each sample contributing to bag probability is evaluated based on the objectness estimation with object properties (superpixel straddling). To reduce the computation cost, a coarse-to-fine sample detection method is employed to detect sample for a new arriving frame. Then, an adaptive learning rate, which exploits the maximum classifier score to assign different weights to tracking result and template, is presented to update the classifiers. Furthermore, an object similarity constraint strategy is used to estimate tracking drift. Experimental results on challenging sequences show that the proposed method is robust to occlusion and appearance changes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 288, 2 May 2018, Pages 43-53
نویسندگان
, , , ,