کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864550 | 1439544 | 2018 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
CS-MRI reconstruction via group-based eigenvalue decomposition and estimation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes a novel method for compressed sensing MRI (CS-MRI) reconstruction that combines both the sparse representation and statistical estimation. In this work, the low-rank property is observed and utilized to sparsely represent the similar patches based on group singular value decomposition (SVD), and the linear minimum mean square error (LMMSE) estimation is exploited to perform sparse coefficients estimation. Based on this, the proposed approach is named group-based eigenvalue decomposition and estimation (GEDE). Furthermore, in order to improve the estimation accuracy of the coefficients, the original problem is reformulated into an equivalent noise model and a novel method is proposed to assess the noise variance of similar patches. Extensive experimental results on the MRI data demonstrate that the proposed method outperforms the state-of-the-art reconstruction methods in terms of removing artifacts and reconstruction errors.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 283, 29 March 2018, Pages 166-180
Journal: Neurocomputing - Volume 283, 29 March 2018, Pages 166-180
نویسندگان
Shujun Liu, Jianxin Cao, Guoqing Wu, Hongqing Liu, Xiaoheng Tan, Xichuan Zhou,