کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6864559 1439544 2018 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust feature selection via simultaneous sapped norm and sparse regularizer minimization
ترجمه فارسی عنوان
انتخاب ویژگی های با ثبات از طریق به طور همزمان رفع اشکال و به حداقل رساندن تنظیم کننده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
High dimension is one of the key characters of big data. Feature selection, as a framework to identify a small subset of illustrative and discriminative features, has been proved as a basic solution in dealing with high-dimensional data. In previous literatures, ℓ2, p-norm regularization was studied by many researches as an effective approach to select features across data sets with sparsity. However, ℓ2, p-norm loss function is just robust to noise but not considering the influence of outliers. In this paper, we propose a new robust and efficient feature selection method with emphasizing Simultaneous Capped ℓ2-norm loss and ℓ2, p-norm regularizer Minimization (SCM). The capped ℓ2-norm based loss function can effectively eliminate the influence of noise and outliers in regression and the ℓ2, p-norm regularization is used to select features across data sets with joint sparsity. An efficient approach is then introduced with proved convergence. Extensive experimental studies on synthetic and real-world datasets demonstrate the effectiveness of our method in comparison with other popular feature selection methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 283, 29 March 2018, Pages 228-240
نویسندگان
, , , , ,