کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864559 | 1439544 | 2018 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust feature selection via simultaneous sapped norm and sparse regularizer minimization
ترجمه فارسی عنوان
انتخاب ویژگی های با ثبات از طریق به طور همزمان رفع اشکال و به حداقل رساندن تنظیم کننده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
High dimension is one of the key characters of big data. Feature selection, as a framework to identify a small subset of illustrative and discriminative features, has been proved as a basic solution in dealing with high-dimensional data. In previous literatures, â2, p-norm regularization was studied by many researches as an effective approach to select features across data sets with sparsity. However, â2, p-norm loss function is just robust to noise but not considering the influence of outliers. In this paper, we propose a new robust and efficient feature selection method with emphasizing Simultaneous Capped â2-norm loss and â2, p-norm regularizer Minimization (SCM). The capped â2-norm based loss function can effectively eliminate the influence of noise and outliers in regression and the â2, p-norm regularization is used to select features across data sets with joint sparsity. An efficient approach is then introduced with proved convergence. Extensive experimental studies on synthetic and real-world datasets demonstrate the effectiveness of our method in comparison with other popular feature selection methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 283, 29 March 2018, Pages 228-240
Journal: Neurocomputing - Volume 283, 29 March 2018, Pages 228-240
نویسندگان
Gongmin Lan, Chenping Hou, Feiping Nie, Tingjin Luo, Dongyun Yi,