کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864644 | 1439546 | 2018 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Event-driven optimal control for uncertain nonlinear systems with external disturbance via adaptive dynamic programming
ترجمه فارسی عنوان
کنترل بهینه بر اساس رویداد برای سیستم های غیر خطی نامشخص با اختلالات خارجی از طریق برنامه ریزی پویای سازگار
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
This paper investigates the optimal control of uncertain nonlinear systems with external disturbance via adaptive dynamic programming, where two kinds of controllers are introduced and event-driven strategy is used to update the controllers as well as the network weights. One controller is constrained-input, and another is used to offset the external disturbance. Three kinds of neural networks (identifier network, critic network and actor network) are used to approximate the uncertain dynamics, the optimal value, control inputs and external disturbance, respectively. To the best knowledge of the authors, the advantage of this paper is that almost all the existing systems about optimal control via adaptive dynamic programming can be considered as special cases of this system, where the external disturbance is considered. By designing appropriate parameters, the uncertain nonlinear system is asymptotically stable with the event-driven controller. And, under the given learning rates of neural networks, the system state and the estimation error of neural networks are proved to be uniform ultimate boundedness (UUB) via adaptive dynamic programming. Finally, numerical simulation results are presented to verify the theoretical analysis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 281, 15 March 2018, Pages 188-195
Journal: Neurocomputing - Volume 281, 15 March 2018, Pages 188-195
نویسندگان
Aijuan Wang, Xiaofeng Liao, Tao Dong,