کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864648 | 1439546 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Eigenobject-wise saliency detection based on manifold ranking
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Saliency detection that utilizes graph model has achieved considerable progress during the past years. However, few methods consider object cues. We propose a novel manifold ranking based graph model that estimates the saliency of the image elements via their relevances to object seeds. An “eigenimage” selection algorithm dependent on the solved eigenvectors of the normalized Laplacian matrix is proposed to generate the object-wise seeds. Meanwhile, we propose a foreground border blanking approach to settle the failure of boundary prior saliency when object regions touching the border. Extensive experiments on benchmark datasets indicate that our algorithm could further improve the performance of representative graph-based saliency detection methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 281, 15 March 2018, Pages 196-205
Journal: Neurocomputing - Volume 281, 15 March 2018, Pages 196-205
نویسندگان
Guoqing Jin, Dongming Zhang, Feng Dai, Yongdong Zhang,